Dispersion Factors in DSM2-QUAL

- Introduction
- Classic dispersion
- Implementing dispersion in QUAL
- Estimating dispersion factor in QUAL
- Application of estimation

Introduction

- Dispersion factor determines mixing in QUAL
- Dispersion in DSM2 is not "classic" Fischer
- Goals:
 - Relate DSM2 mixing to classic dispersion
 - Find out if a DSM2 dispersion factor is limited physically by a value of 1.0 – NO!!!
 - Determine guidelines for reasonable values
 - Understand dependence on geometry and flow

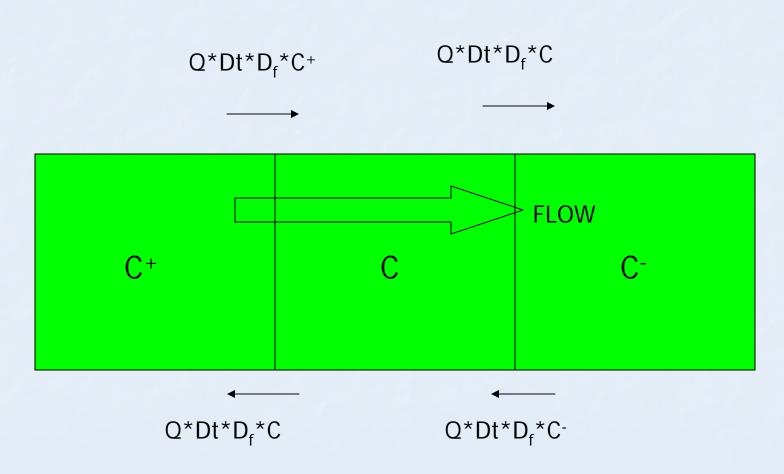
- Introduction
- Classic dispersion

Classic Dispersion and QUAL

- Classic dispersion describes mixing due to eddy circulation and velocity differences over the channel cross section.
- Classic dispersion is modeled by a "diffusion analogy" – looks like diffusion equation.
- QUAL's mixing formula describes volume exchanges between parcels over a time step.
- QUAL's mixing is a finite-difference approximation to diffusion under steady conditions, similar under other conditions.

Basic Transport Equation

With respect to a axis which moving in mean flow speed


$$\frac{\partial C}{\partial t} = \frac{\partial}{\partial \xi} (D \frac{\partial C}{\partial \xi}),$$

Dispersion coefficient

- D is a macro indicator of the diffusing ability of flow under study.
- D is a physical parameter with unit (L²/T), whose values depends on flow profile and stream geometry

- Introduction
- Classic dispersion
- Implementing dispersion in QUAL

Mixing Mechanism in QUAL

DSM2-QUAL Dispersion

• QUAL is a finite diff. approximation to the diffusion equation under steady flow for this definition of D_f (BLTM user manual):

$$D_f = \frac{D}{|u|\Delta x},$$

Where:

u is cross-section mean flow velocity

 Δx is length of water parcel used in approximation

This definition on the previous slide answers the question:

> "What is physical interpretation of the QUAL dispersion factor"

For steady flow, D_f is ratio of dispersion to advection. The ratio is dimensionless.

- Introduction
- Classic dispersion
- Implementing dispersion in QUAL
- Estimating dispersion factor in QUAL

Fischer Dispersion

Fischer gave a empirical formula to estimate dispersion coefficient *D* (not D_f) for streams:

$$D = \frac{0.011uW^2}{du^*}$$

Empirical observations of estuaries:

$$1000 < D (ft^2/s) < 12000$$

*For estuaries D tends to be lower

Comparing DSM2 to Fischer: 2 methods

■ Substitute Fischer's stream formula for D in QUAL's coefficient D_f :

$$D_f = \frac{0.011 \left| u \right| W^2}{du \cdot \Delta x}$$

Compare Fischer's estuary observations to QUAL's coefficient:

$$D_f = \frac{D}{|u|\Delta x},$$

Wide Channel Example

- Channel 640 used in extension grid
- Parcel length $\Delta x = 2000$ ft
- Width w=8000 ft
- Depth d=50 ft (typical)
- Slope estimate S=0.0008
- Mean flow velocity u=1.75 ft/s, shear velocity $u^*=1.135$

Stream formula prediction:

$$D_f = \frac{0.011*1.75*8000^2}{50*1.135*2000} = 10.85.$$

Estuary Observation Prediction: $0.3 < D_f < 3.4$

Estuary Channel Example

- Channel 133 (middle river)
- Simulated discharge 1028 cfs
- Parcel length $\Delta x = 300 \text{ft}$
- Width w=240 ft
- Depth d=8.7 ft
- Slope estimate S=0.000204
- Mean flow velocity u=0.49 ft/s, shear velocity u*=0.24 ft/s

$$D_f = \frac{0.011*0.49*240^2}{8.7*0.24*300} = 0.5$$

- Introduction
- Classic dispersion
- Implementing dispersion in QUAL
- Estimating dispersion factor in QUAL
- Application of estimation

- A application of wide channel with large dispersion (10-12) factor as extension of DSM2 grid down to the Golden Gate has been done
- Extended DSM2 grid can repeat historical EC at Martinez point, and also simulated EC of same magnitude with 2D model (RMA) in island flooding simulation

Conclusions

- Dispersion factor D_f can be larger than 1.
 - Stream formula gives larger values than estuary observations
- Larger channels D_f can be greater than smaller channel by order of magnitude
- Implications:
 - Still examining SF Bay Extension Grid
 - Calibration should take this into account
 - Small Channels may have very small D_f